
Architectural Considerations for Next Generation File Systems

Prashant Shenoy� Pawan Goyalyy and Harrick M. Vinzz

Department of Computer Science, yEnsim Corporation zDepartment of Computer Sciences,

University of Massachusetts 1215 Terra Bella Ave University of Texas

Amherst, MA 01003 Mountain View, CA 94043 Austin, TX 78712

shenoy@cs.umass.edu goyal@ensim.com vin@cs.utexas.edu

Abstract

Integration—supporting multiple application classes with heterogeneous performance requirements—is an

emerging trend in networks, file systems, and operating systems. We evaluate two architectural alternatives—

partitioned and integrated—for designing next generation file systems. Whereas a partitioned server employs a

separate file system for each application class, an integrated file server multiplexes its resources among all ap-

plication classes; we evaluate the performance of the two architectures with respect to sharing of disk bandwidth

among the application classes. We show that although the problem of sharing disk bandwidth in integrated file

systems is conceptually similar to that of sharing network link bandwidth in integrated services networks, the

arguments that demonstrate the superiority of integrated services networks over separate networks are not appli-

cable to file systems. Furthermore, we show that: (i) an integrated server outperforms the partitioned server in

a large operating region and has slightly worse performance in the remaining region, (ii) the capacity of an inte-

grated server is larger than that of the partitioned server, and (iii) an integrated server outperforms the partitioned

server by up to a factor of 6 in the presence of bursty workloads.

Keywords: file systems, multimedia workloads, integrated systems, performance evaluation.

1 Introduction

1.1 Motivation

The current euphoria over the World Wide Web does not do full justice to the potential of the Internet; with the

manifold increases in CPU processing power and network bandwidth, it is inevitable that the Internet will support

distributed applications that process massive amounts of data for visualization and support real-time interactivity.

For instance, a digital library of satellite imagery might be processed for feature extraction or visualization; a vir-

tual environment for training fire fighters will involve distributed simulations and real-time user interactivity. These

applications differ from conventional applications in at least two ways. First, they involve storing, transporting,

and processing heterogeneous data types (e.g., images, audio, video, text, etc.). Second, they impose diverse per-

formance requirements (e.g., with respect to timeliness) on networks and operating systems. Traditionally, such

�Prashant Shenoy was supported in part by Intel, IBM, NSF CAREER award CCR-9984030, and the University of Massachusetts.
yThis work was carried out when the author was with AT&T Labs Research.
zHarrick Vin was supported in part by AT&T, IBM, Intel, the National Science Foundation (CAREER award CCR-9624757, and Research

Infrastructure Award CDA-9624082), NASA, Mitsubishi Electric Research Laboratories (MERL), and the Texas Advanced Technology

Program grant ATP-443.

1

heterogeneous applications have been supported in isolated and dedicated environments. Recently, triggered by

the technological advances and the proliferation of the Internet, the problem of supporting these applications in

general-purpose computing, communication, and storage environments—where resources are shared among sev-

eral, potentially conflicting, applications—is receiving much attention.

In this paper, we consider the design of next-generation file systems that, unlike conventional file systems, will

need to export multiple service classes to meet the performance requirements of heterogeneous data types and

applications [17, 21]. We consider two architectural alternatives for designing such file systems (see Figure 1):

� A partitioned architecture that: (1) divides the server resources among multiple component file systems, each

optimized for a particular application class or data type, and (2) employs an integration layer that provides a

uniform mechanism to access files managed by separate file systems.

� An integrated architecture that multiplexes all the resources available at a server—the storage space, the disk

bandwidth, and the buffer cache—among multiple application classes and data types.

Since techniques for designing file systems that are optimized for a single application class are well-understood

[9, 14, 24, 25], partitioned file systems are easy to design and implement. The design of integrated file systems, on

the other hand, is challenging due to the heterogeneous performance requirements of data types and applications.

However, such file systems can potentially provide better performance to applications as compared to a partitioned

system by sharing all file system resources among the application classes. This hypothesis has been at the basis of

the design of several integrated file systems [1, 13, 21]. Most papers on the design of these file systems implicitly

assume that such an architecture is, in fact, necessary and give little justification for their approach. Proponents of

the partitioned architecture, on the other hand, argue that the gains due to integration are insignificant to warrant its

increased complexity. Surprisingly, there has been no study that systematically evaluates the two architectures to

quantify these tradeoffs.

In this paper, we focus on evaluating the tradeoffs between the two architectural alternatives for designing next-

generation file systems. Rather than advocating a particular design alternative, our goal here is to provide a system-

atic evaluation—with respect to application performance—of the two architectural choices. We believe that such

an evaluation will provide valuable insights and guidelines to future file system designers. Although a file system

manages several resources such as disk bandwidth, storage space, and buffer cache; in this paper, we restrict our

evaluation to the potential performance gains that can be achieved by sharing disk bandwidth.

1.2 Problem Formulation

The problem of sharing disk bandwidth in an integrated file system is conceptually similar to that of multiplexing

link bandwidth in integrated services networks. An integrated services network provides efficiency and economy to

network providers, convenience to users, and better performance to various applications. To illustrate, consider an

environment with two separate networks—each with capacity C—serving different application classes, and an inte-

grated services network with capacity 2C . If the integrated services network carries packets of the same size as the

separate networks, then the integrated services network can provide to applications no worse, and often significantly

better, performance than the separate networks by simply employing a round-robin scheduler for packets belonging

2

 Video
Server

Integration layer

 Text
Server

DisksDisks

Buffers Buffers

Applications

Disks

Buffers

Integrated server

Applications

(a) Partitioned file server (b) Integrated file server

Figure 1: Partitioned and integrated file servers supporting text and video applications. The partitioned architecture

divides the server resources among multiple component file systems, and employs an integration layer that provides

a uniform mechanism to access files. The integrated architecture employs a single server that multiplexes all the

resources among multiple application classes.

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

R
es

po
ns

e
tim

e
(m

s)

Number of text clients

 16 disks, 50 video clients

Integrated, round robin
Partitioned, SCAN

Figure 2: Limitation of fair scheduling algorithms for integrated file servers. Use of a round-robin scheduling

algorithm to service text and video requests in integrated file system causes the disk to incur a large seek and

rotational latency overhead when switching between requests. Hence, the response time is significantly worse than

a partitioned system that employs separate servers for text and video.

to the two application classes (see [2] for an example of an algorithm when packets are of unequal size). This is

because when both the application classes have packets to transmit, they each receive C units of bandwidth—similar

to the separate network scenario; but when one of the application classes does not utilize its fair share, the idle

network bandwidth is used to provide better performance to the other application class. The increased efficiency due

to statistical sharing of network bandwidth is the central design principle of integrated services networks. In fact, it

has been argued that the least efficient network design is the one that uses separate networks, each optimized for a

different application class [18].

This leads to the following fundamental question: do the arguments that demonstrate the superiority of an in-

tegrated services network over separate networks also apply when comparing the performance of partitioned and

integrated file servers? Surprisingly, the answer to this question is not straightforward. This is because:

1. There is a subtle difference in the characteristics of network links and disks: network link throughput is

unaffected by the relative order of servicing requests; but for disks, the relative order of servicing requests

3

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
(m

s)

Number of video clients

 16 disks, 80 text clients

Integrated, SCAN
Partitioned, SCAN

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 20 40 60 80 100 120 140 160 180 200

%
 o

f d
ea

dl
in

es
 v

io
la

te
d

Number of text clients

16 disks, 80 video clients

Integrated, SCAN
Partitioned, SCAN-EDF

(a) Text response time (b) Percentage of deadline violations for video

Figure 3: Inability of SCAN to isolate the performance of different application classes.

governs the overall disk throughput. Round-robin and fair scheduling algorithms (e.g., WFQ [6], WF2Q [2])

determine the order for servicing requests based solely on the fairness criterion; they ignore the seek time and

rotational latency incurred while servicing each disk access request. Consequently, using them to arbitrate

access to disk bandwidth yields poor performance. In fact, the overhead incurred by such algorithms may

more than offset the statistical multiplexing gains obtained by the integrated architecture (see Figure 2).

2. Conventional disk scheduling algorithms such as SCAN and SATF (Shortest Access Time First) [3, 4, 7, 8, 11,

23, 27] determine the order of servicing disk requests based solely on the relative positions of the blocks to be

accessed on disk, and hence minimize the seek time and rotational latency overhead incurred while servicing

requests. However, they do not provide any isolation across classes: a burst of request arrival for best-effort

application may violate the deadlines of requests from real-time applications, and the arrival of a large number

of real-time requests can cause response times for best-effort applications to degrade (see Figure 3).

To realize the benefits of statistical multiplexing when applications have diverse requirements, it has been argued

that a disk scheduling algorithm should: (1) align the service it provides with the application needs, (2) protect

application classes from one another, (3) be work-conserving and adapt to changes in work-load, (4) minimize the

seek time and rotational latency overhead incurred during access, and (5) be computationally efficient. In the recent

past, several algorithms have been proposed to address these issues [15, 20, 26]. These algorithms are heuristics

for meeting these requirements and do not formally guarantee these properties. Hence, unlike integrated services

networks, the superiority of integrated file servers from the perspective of application performance has not been

theoretically argued or formally demonstrated. Therefore, we experimentally answer the following question: given

an appropriate disk scheduling algorithm, can an integrated file server achieve statistical multiplexing gains similar

to those in integrated services networks? To formulate the problem more precisely, consider the following special

case of this general question.

Consider a file system that supports text and video applications. Let the file system be required to support T text

and V video clients simultaneously. For the partitioned architecture, let D
1

and D
2

, respectively, denote the number

of disks required for the text and the video servers to meet this requirement. Now, consider an integrated server that

multiplexes (D

1

+ D

2

) disks among both application classes. In the ideal scenario (i.e., similar to the integrated

4

0 T

V

Number of text clients
N

u
m

b
er

 o
f

v
id

eo
 c

li
en

ts

Integrated server

Partitioned server

(D1+D2)T
−−−−−−−
 D1

(D1+D2)V
−−−−−−−
 D2

Figure 4: Boundaries of operation for a partitioned and an ideal integrated file server. A partitioned file server that

partitions resources among a text and a video server can support up to T text and V video clients. An ideal integrated

file server with an identical configuration can support up to D

1

+D

2

D

2

�V video and D

1

+D

2

D

1

�T text clients. Moreover,

it provides comparable or better performance in the shaded region when the number of text and video clients is less

than T and V .

services networks), we would expect the integrated server to provide no worse and often better performance when

the number of text and video clients is less than T and V , respectively. Furthermore, we would expect the integrated

server to support: (1) at least T text and V video clients simultaneously; (2) D

1

+D

2

D

2

� V video clients when there

are no text clients; and (3) D

1

+D

2

D

1

� T text clients in the absence of any video clients. Finally, the capacity of the

server should scale linearly between these two extremes. Figure 4 depicts this ideal behavior. In this scenario, we

are interested in answering two questions:

1. Does the integrated architecture yield better performance in the shaded region in Figure 4 as is expected in an

ideal server? Does the capacity of the integrated server scale linearly between D

1

+D

2

D

2

�V video and D

1

+D

2

D

1

�T

text clients?

2. What is the expected difference in performance of the partitioned and integrated architectures in the presence

of bursty workloads?

1.3 Research Contributions of This Paper

In this paper, we evaluate the performance of the integrated and partitioned servers for text and video applications.

We first compare the performance of the two architectures when the load is less than the maximum that can be

supported by the partitioned system (the shaded region in Figure 4). Our experiments demonstrate that the integrated

server outperforms the partitioned server in a majority of this region. Unlike an integrated services network, however,

the integrated server yields slightly worse performance than its counterpart in a small region. Specifically, text

requests see a worse response time at low text and heavy video loads (upper left hand corner of the region), whereas

video request see a larger number of deadline violations at heavy text and video loads (upper right hand corner of the

region). For video clients, we show that, in spite of the potential interference from text requests, the integrated server

is able to provide matching performance to video requests (by meeting a comparable number of request deadlines).

Next, we determine if the capacity of an integrated server scales up to D

1

+D

2

D

2

� V video and D

1

+D

2

D

1

� T text

clients. We demonstrate that the capacity curve of an integrated server is indeed similar to that of the ideal scenario;

5

hence an integrated server can support a larger number of clients from an application class when the other class does

not use its fair share. However, due to load imbalances in the system and the idiosyncrasies of the disk scheduling

algorithm, there is a small (about 5%) degradation in the number of text and video clients supported as compared to

the ideal server.

Finally, we demonstrate that the ability of an integrated server to support a larger number of clients enable it to

adapt to bursty workloads that can cause transient overloads. Specifically, we show that, when the server is operating

at 50% utilization, in the presence of bursty text loads, the average response time yielded by the integrated server is

smaller by a factor of 6 as compared to the partitioned server. On an average, the integrated server yields a 40%–

80% improvement in response time over its counterpart. Moreover, such bursty loads have little or no effect on the

performance of video clients.

The rest of the paper is organized as follows. Section 2 describes our experimental methodology for comparing the

partitioned and integrated architectures. Section 3 discusses our experimental results. Finally, Section 4 summarizes

our results and highlights our key observations.

2 Experimental Methodology

To evaluate the tradeoffs between the two architectural alternatives for designing next-generation file systems, we

conduct extensive simulations. In what follows, we describe our simulation environment, the metrics for our evalu-

ation, and the workload generator.

2.1 Simulation Environment

We have implemented an event-based simulator to evaluate the relative performance of the partitioned and the in-

tegrated architectures. We report the results of our evaluation of the partitioned and the integrated servers that (1)

support storage and retrieval of two data types—text and video, and (2) support two service classes—interactive

best-effort and real-time.

To support the two application classes, the partitioned file system employs a text server and a video server, with

D

1

and D

2

disks, respectively. Each file is striped across all the disks within a server. The text and video servers,

respectively, provide interactive best-effort and real-time service to applications. The text server uses the SCAN

disk scheduling algorithm [23] to service requests, while the video server uses SCAN-EDF [16]. Whereas SCAN

services requests in the increasing order of cylinder numbers so as to reduce the seek time overheads, SCAN-EDF

services requests in the increasing order of deadlines; requests with identical deadlines are serviced in the SCAN

order.

The integrated server multiplexes (D

1

+ D

2

) disks among the two data types and application classes. Disk

bandwidth is multiplexed among the requests from the two application classes using the Cello disk scheduling

algorithm [20]. Cello allocates disk bandwidth to application classes at two time-scales. At a coarse time-scale, it

determines the number of requests from each application class to be serviced, and at a fine time-scale, it determines

the order for servicing the set of selected requests. Whereas the former enables Cello to protect application classes

from one another and to adapt disk bandwidth allocation with changing workload, the latter enables it to align the

service provided with the application requirements while minimizing the seek time and rotational latency overhead.

6

Table 1: Disk parameters of Seagate Elite3 disk

Disk capacity 2 GBytes Minimum seek time 1.7 ms

Bytes per sector 512 KB Maximum seek time 22.5 ms

Sector per track 99 Maximum rotational latency 11.1 ms

Tracks per cylinder 21 Average seek time 11.0

Cylinders per disk 2627 Average Transfer rate 4.6 MB/s

Additionally, Cello exploits characteristics of requests to align the service provided with application needs. For

the two application classes under consideration, Cello delays real-time requests until their deadlines and uses the

available slack to service interactive best-effort requests; this enables it to provide low average response times to

the interactive best-effort applications without violating the deadlines of the real-time applications. Furthermore, it

assigns weights to each application class and allocates bandwidth to classes in proportion to their weight; bandwidth

unused by a class is reassigned to other classes with pending requests [20].

To derive the results presented in this paper, we configure the text and the video servers in the partitioned archi-

tecture with 8 disks each (i.e., D
1

= D

2

= 8), and the integrated server with 16 disks. We use stripe unit sizes of

8KB and 64KB, respectively, to stripe text and video files on the disk arrays. The text server employs a 64MB LRU

buffer cache; the video server does not use caching. The integrated server also uses a 64MB LRU buffer cache for

text requests. To ensure that the integrated server allocates equal bandwidth to each application class (and thereby

mimic D
1

= D

2

= 8 in the partitioned architecture), we assign equal weights to the two application classes in the

Cello scheduler (i.e., w
1

: w

2

= 1 : 1) [20]. We parameterize the disk simulator with the characteristics of the

Seagate Elite3 disk [19]. (see Table 1). The seek time, rotational latency, and transfer times are computed using an

empirically derived disk model [12]. The disk model in our simulator was validated using a real disk for the SCAN

disk scheduling algorithm (since algorithms such as Cello and SCAN-EDF haven’t been deployed in real systems,

we were unable to validate the simulator for these algorithms).

2.2 Performance Metrics

Text applications desire low average response times, whereas video applications require request deadlines to be met.

Consequently, to compare the performance of partitioned and integrated servers, we choose the average response

time of text retrieval requests as the metric for text applications, and the percentage of deadline violations as the

metric for video applications. We measure the capacities of the two architectures in terms of the maximum number

of text and video clients that can be supported such that the average response times and the percentage of deadline

violations are smaller than thresholds �
t

and �
v

, respectively.

2.3 Workload Generation

To compare the performance of the integrated server to the partitioned and the ideal integrated servers (Figure 4), we

need to evaluate their performance at different operating points (i.e., text and video loads). Since most available file

7

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140 160 180 200

K
B

/s

Time (s)

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140 160 180 200

K
B

/s

Time (s)

Figure 5: Variation in bit rates of video clients: (a) variation in the average bit rate of the Frasier MPEG-1 trace over

one second intervals. (b) variation in the aggregate bit rate of 10 MPEG-1 clients.

Table 2: Characteristics of MPEG-1 traces

MPEG Encoding Length Bit rate

File Pattern (frames) Mb/s

Frasier I(BBP)

3

BB 5960 1.49

Newscast I(BBP)

3

BB 9000 2.33

Flintstones I(BBP)

3

BB 9000 1.67

Olympics I(BBP)

3

BB 9000 1.49

system traces contain various parts of the operating region (these regions are not clearly identifiable in the trace), it

is difficult to use them to study performance at any particular operating point. Hence, we explore the complete space

by using a synthetic load generator.

Our synthetic workload generator selects an operating point by fixing the number of text and video clients ac-

cessing the file system. Let t (0 � t � T) and v (0 � v � V), respectively, denote the number of text and video

clients. Each text client accesses a randomly selected file; the inter-arrival time between successive requests issued

by each client is exponentially distributed, and the amount of data retrieved by each request is normally distributed.

We varied both the mean inter-arrival time and the mean request size in our experiments; due to space constraints,

we only present simulation results for a mean request size of 32KB and a mean inter-arrival time of 1s.

Each video client randomly selects a video file and then initiates retrieval from a random point in that file. Due

to the periodicity and sequentiality of access, the video server services requests from the clients by proceeding in

terms of periodic rounds, accessing f frames for each client during each round [22]. For the simulations, we use

f = 30 and the round duration of 1 second. For variable bit rate (VBR) encoded video streams, the size of f frames

may vary from one round to another (see Figure 5). The workload generator models this behavior by determining

the amount of video data accessed during each round using VBR encoded MPEG-1 traces (see Table 2).

We compare the performance of the two architectures under bursty workloads in two steps. In the first step, we

utilize bursty text load, and assume fixed video load. To generate bursty text workload, we use a portion of the NFS

traces gathered from an Auspex file server at Berkeley [5]; the characteristics of these traces are shown in Table 3.

To derive the text workload, we filter out requests that would be absorbed by a 64MB LRU buffer cache at the file

8

Table 3: Characteristics of the Auspex NFS trace

Number of read/write operations 218724

Average bit rate (original) 218.64 KB/s

Average bit rate (with 64MB cache) 83.91 KB/s

Average inter-arrival (original) 9.14 ms

Average inter-arrival (with 64MB cache) 22.53 ms

Average request size 2048.22 bytes

Peak to average bit rate (1s intervals) 12.51

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

0 250 500 750 1000 1250 1500 1750 2000

B
yt

es
/s

Time (s)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

ba
bi

lit
y

Normalized load

(a) (b)

Figure 6: Characteristics of the NFS traces: (a) average bit rate of NFS traces over one second intervals; this

demonstrates the bursty nature of the trace. (b) the normalized load distribution function.

server, and assume that the remaining requests result in disk accesses. Figure 6 illustrates the characteristics of the

resulting text workload.

In the second step, we assume that both video and text workloads are bursty. Since very few, if any, video

servers have been deployed, traces that demonstrate the bursty nature of video access are not available. Hence, we

hypothesize that the burstiness of video clients is similar to the text clients and then use textual traces to deduce the

variability in video load. By using the distributions of text and video loads derived from traces (rather than using

the trace itself), we can compute the expected performance of the two architectures. Thus, if p(t; v) denotes the

probability of the server being at operating point (t; v) (computed from traces) and d(t; v) denotes the difference in

the response times of the partitioned and the integrated architectures at a load (t; v), then the expected difference in

the performance of the two architectures is
P

t

P

v

d(t; v) � p(t; v).

3 Experimental Evaluation

The objective of this section is to answer two questions:

� Does the integrated architecture yield better performance in the shaded region in Figure 4? How does the

capacity of an integrated server compare to that of an ideal integrated server depicted in Figure 4?

� What is the difference in performance of the integrated and partitioned architectures in the presence of bursty

workloads?

9

0 0.5 0.750.25 1.0

0

0.25

0.5

0.75

1.0

Normalized text load

N
o
rm

a
li

ze
d

 v
id

eo
 l

o
a
d

16 disks, text server=video server= 8 disks

Better performance

 Worse
performance

0 0.5 0.750.25 1.0

0

0.25

0.5

0.75

1.0

Normalized text load

N
o
rm

a
li

ze
d

 v
id

eo
 l

o
a
d

16 disks, text server=video server= 8 disks

 Worse
performance

 Comparable or
better performance

(a) Response time (b) Percentage of deadlines violated

Figure 7: Performance under different workload mixes. The integrated server yields worse performance in the

shaded areas.

We address the first question in Sections 3.1 and 3.2, and the second question in Section 3.3.

3.1 Comparison of Partitioned and Integrated Systems

To compare the performance of the partitioned and the integrated systems in the shaded region in Figure 4, let us

first define the region by determining the values of T and V , which, respectively, denote the maximum number of

text and video clients supported by the partitioned server. To determine T , we increased the text workload until the

average response time of a request yielded by the text server in the partitioned architecture exceeded a threshold �

t

.

For �
t

= 100ms, we obtained T = 200. To determine V , we increased the video workload until the percentage of

request deadlines violations yielded by the video server in the partitioned architecture exceeded a threshold �

v

. For

�

v

= 1%, we obtained V = 102.

Given the values of T and V , we varied the text and video loads in the ranges [0; T ℄ and [0; V ℄, respectively, in

increments of 10; and for each combination (t; v), we measured the average response time of text requests and the

percentage of deadlines violations for video requests in both partitioned an integrated servers. The results of these

231 experiments are summarized in Figures 7 and 8. The X and Y axes plot normalized values of text and video

workloads; a normalized load of 1 corresponds to T text clients and V video clients. The non-shaded regions in

Figure 7 indicate workloads at which the integrated server either yields comparable performance or outperforms the

partitioned server; the shaded region identify regions where the partitioned system outperforms the integrated server.

In what follows, we discuss in detail the results of our experiments; first for text clients and then for video clients.

3.1.1 Performance of Text Clients

Figure 9 plots the variation in average response time of text clients for different video loads and a fixed text load. Since

text and video requests access mutually exclusive set of disks, the response time of text requests in the partitioned

server is independent of the video load. On the other hand, even though the integrated server uses the Cello disk

10

Z axis=(response time in partitioned - response time in integrated)

0.2
0.4

0.6
0.8

1 0
0.2

0.4
0.6

0.8
1

-10
0

10
20
30
40
50
60
70
80
90

Normalized text load

Normalized video load

Z axis=(%deadlines violated in partitioned - integrated)

0.2
0.4

0.6
0.8

1
0.2

0.4
0.6

0.8
1

-1

-0.5

0

0.5

1

Normalized text load

Normalized video load

(a) Response time (b) Percentage of deadlines violated

Figure 8: Performance under different workloads. The figure quantifies the difference in response times and per-

centage of deadlines violated in integrated and partitioned servers. The figure shows that the integrated server

outperforms the partitioned server by a significant amount in many regions, while it under-performs its counterpart

in other regions by only a small amount.

scheduling algorithm to isolate text requests from video requests, the isolation is not total. Hence, the response time

of text requests increases slowly with increase in video load. This increase can be attributed to two factors. First,

increasing the video load increases the probability of a text request arriving when a video request is being serviced

by the disk. Since requests in service cannot be preempted, the text request must wait until that request has been

serviced. Second, increasing the video load also reduces the slack available to service text requests. Cello schedules

a text requests prior to a video request only if sufficient slack is available; hence, reduction in slack yields an increase

in the queuing delays and the response times observed by text requests.

Figure 10 compares the response time of text clients in the two architectures for different text loads and a fixed

video load. As expected, increasing the text load causes the response time of text requests to increase in both

servers, albeit the increase is larger in the partitioned server. To understand this behavior, consider the two factors

that contribute to the response time of a request—service time and queuing delay. The service time of a request—

defined as the summation of the seek time, rotational latency and transfer time incurred in servicing a request—in

the average case depends on the physical characteristics of the disk and the amount of data being retrieved from

disk. Hence, the service time of a request is largely independent of the load. In contrast, the queuing delay incurred

by a request is completely governed by the load. Since text files are striped across a larger number of disks in the

integrated architecture, the number of disks servicing text requests is larger than that in the partitioned system. This

results in a smaller number of text requests per disk, and hence, shorter queues at each disk. Consequently, the

integrated server yields better response times over a range of video loads. In fact, at heavy text loads, the queuing

delay dominates the response time, causing the integrated server to outperform its counterpart regardless of the video

load (see Figure 10).

3.1.2 Performance of Video Clients

Figure 11 plots the percentage of deadlines violated for video requests for different values of text load with varying

number of video clients. As shown in the figure, at light and moderate video loads, both servers meet deadlines of

11

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
(m

s)

Number of video clients

 16 disks, w1:w2 = 1:1

Integrated, 50 text clients
Partitioned, 50 text clients

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
(m

s)

Number of video clients

 16 disks, w1:w2 = 1:1

Integrated, 100 text clients
Partitioned, 100 text clients

(a) (b)

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
(m

s)

Number of video clients

 16 disks, w1:w2 = 1:1

Integrated, 150 text clients
Partitioned, 150 text clients

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

R
es

po
ns

e
tim

e
(m

s)

Number of video clients

32KB request, 16 disks, w1:w2 = 1:1

Integrated, 200 text clients
Partitioned, 200 text clients

(c) (d)

Figure 9: Response time of interactive text requests in partitioned and integrated servers. Figures (a) through (d)

plot the variation in response times for different video workloads and a text load of 50, 100, 150 and 200 clients,

respectively.

0

20

40

60

80

100

0 50 100 150 200

R
es

po
ns

e
tim

e
(m

s)

Number of text clients

 w1:w2 = 1:1

Integrated, 20 video clients
Integrated, 50 video clients
Integrated, 70 video clients
Integrated, 90 video clients

Partitioned

Figure 10: Response time of interactive text requests in partitioned and integrated servers. The figure plots the

variation in response times for different text workloads.

12

0

0.5

1

1.5

2

0 20 40 60 80 100

%
 o

f d
ea

dl
in

es
 v

io
la

te
d

Number of video clients

 w1:w2 = 1:1

Integrated, 50 text
Integrated, 100 text
Integrated, 150 text
Integrated, 200 text

Partitioned, SCAN-EDF

Figure 11: Percentage of deadlines violated for video requests in partitioned and integrated servers.

all real-time requests regardless of the text load. At heavy video load and light text load, the percentage of deadline

violations is comparable in both the servers. However, at heavy video and text load, the integrated server has slightly

higher deadline violations than the partitioned server. This is due to two reasons:

1. Switching between application classes causes the Cello disk scheduling algorithm employed by the integrated

server to incur a higher seek and rotational latency overhead than the SCAN-EDF algorithm employed by the

partitioned server.

2. It has been shown in [22] that, for a fixed number of video clients, increasing the number of disks in the server

increases the load imbalance across the disks, leading to a higher percentage of deadline violations. Since

the integrated server uses twice the number of disks to service video clients, it has a higher load imbalance

resulting in a higher percentage of deadline violations. At light text loads, however, the effect of increased

load imbalance is offset by the available unused bandwidth.

We conclude from our experiments thus far that in the shaded region (namely, 0 � t � T and 0 � v � V), the

integrated server yields higher performance improvement for text clients than video clients (see Figures 7 through

11). This is because, an integrated server utilizes any unused disk bandwidth allocated to video clients to reduce the

average response time for text requests. For video requests, on the other hand, since the value of V is chosen such

that the percentage of deadlines violations in the partitioned server does not exceed t

v

= 1%, there is little room

for achieving significant reduction in the percentage of deadline violations. Hence, for the entire operating region,

the difference in the percentage of deadline violations in the integrated and partitioned architecture is marginal. In

the next section, we will demonstrate that both classes benefit from increased capacity yielded by the integrated

architecture.

3.2 Capacity of an Integrated Server

An integrated server can support t text and v video clients simultaneously if the response time of text clients at

that load is less than threshold �

t

= 100ms and the percentage of deadlines violated of video clients is less than

threshold �

v

= 1%. We first determined the number of text clients that could be supported at various video loads.

To do so, we varied the text load until the threshold �

t

was reached. Figure 12(a) plots the variation in response time

13

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350 400

R
es

po
ns

e
tim

e
(m

s)

Number of text clients

16 disks, w1:w2=1:1

Integrated, 0 video clients
Integrated, 40 video clients
Integrated, 90 video clients

Partitioned

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 20 40 60 80 100 120 140 160 180

%
 d

ea
dl

in
es

 v
io

la
te

d

Number of video clients

16 disks, w1:w2=1:1

Integrated, 20 text clients
Integrated, 100 text clients
Integrated, 150 text clients
Integrated, 200 text clients

Partitioned

(a) (b)

Figure 12: Capacity of the integrated server: (a) text capacity, and (b) video capacity

for text clients for different video loads. Next, we determined the number of video clients that could be supported at

various text loads. To do so, we increased the video load until the percentage of deadlines violated exceeds threshold

�

v

. Figure 12(b) plots the percentage of request deadlines violated for different text load. Figure 13 combines the

results of these experiments and plots the number of video and text clients that can be supported simultaneously by

an integrated server.

Recall that, for �
t

= 100ms and �

v

= 1%, the partitioned server can support T = 200 text and V = 102 video

clients. Since the integrated server, in our experiments, utilizes twice as many disks as the text and the video servers

in the partitioned architecture, ideally, the integrated server should be able to support up to 400 text clients when

there is no video load, and 204 video clients when there are no text clients. Furthermore, the performance of the ideal

integrated server will scale linearly between these two extremes. Figure 13 compares the capacity of a partitioned,

an ideal integrated, and an integrated servers. The figure shows that:

� The capacity curve of the integrated server is indeed similar to that of the the ideal integrated server; hence

an integrated server can support approximately twice the number of clients from an application class when

the other class does not use its fair share. However, there is a small degradation (about 5%) in capacity as

compared to the ideal scenario.

� The partitioned server can support 200 text and 102 video clients simultaneously, whereas the integrated server

can support 192 text and 97 video clients simultaneously. Thus, there is about 4.3% percentage degradation

in the capacity of the integrated system as compared to the partitioned system.

The decrease in capacity of the integrated servers vis-a-vis partitioned and ideal integrated servers is due to the

following reasons:

� Effect of video clients on text requests: The presence of video clients reduces the slack available to service text

clients as well as increases the probability of a disk being busy when a text request arrives. Both factors require

a text request to wait before being serviced. The resulting increase in response time causes the threshold �

t

to

be reached at a smaller load, resulting in a reduction in capacity.

14

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400

N
um

be
r

of
 v

id
eo

 c
lie

nt
s

Number of text clients

16 disks, w1:w2=1:1

Integrated, ideal
Integrated, actual

Partitioned

Figure 13: Capacity comparison of the partitioned, the ideal integrated, and the ideal integrated server architectures

� Increased load imbalance: Since the integrated server uses (D
1

+D

2

) disks to service text and video clients,

it has a higher load imbalance as compared to a partitioned server that uses D
1

and D

2

disks each to service

text and video requests, respectively [22]. An increased load imbalance results in an increase in queuing

delay and response time for text requests, which in turn reduces capacity. It also causes the most heavily

loaded disk to reach saturation at a lighter video load. Since number of video clients supported by a server

reaches its capacity when the most heavily loaded disk in the array reaches saturation (increasing the video

load beyond this point results in an increasing number of request deadline violations), this results in a reduced

video capacity [22].

� Idiosyncrasies of the scheduling algorithm: Since the Cello disk scheduling algorithm employed by the inte-

grated server must switch between various classes, it incurs higher seek and rotational latency overheads than

a partitioned system. This results in a reduction in throughput, and hence, capacity.

3.3 Performance for Bursty Workloads

In the experiments described in the previous two subsections, we used synthetic workloads for text clients that

were non-bursty in nature. However, real-life workloads exhibit substantial burstiness at multiple time scales [10]

and vary dynamically over time. Consequently, even when average load is substantially smaller than capacity, such

workloads can contain periods of intense bursts causing transient overloads in the system. In this section, we compare

the performance of the two architectures in the presence of such bursty workloads. We first examine the impact of

burstiness along a single dimension (i.e., bursty text and fixed video loads) and then evaluate the performance when

both text and video loads vary over time.

3.3.1 Impact of Bursty Text Loads

To evaluate the performance of the two architecture in the presence of bursty text loads, we use the NFS trace

described in Section 2.3. To generate different workloads using the same trace, we scale the timestamp associated

with each request by a factor S . Such scaling of timestamps changes the inter-arrival times between requests; S > 1

increases the average inter-arrival time, while S < 1 decreases it.

15

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000

R
es

po
ns

e
tim

e
(m

s)

Text workload (KB/s)

16 disks, w1:w2 = 1:1

Integrated, 10 video clients
Integrated, 50 video clients
Integrated, 70 video clients
Integrated, 90 video clients

Partitioned

Figure 14: Performance using bursty text workloads.

To determine the performance of text clients, we fix the video load and measure the response time assuming

bursty text loads. Note that, the text loads used for our experiments were such that the average load was always

smaller than capacity (i.e., was within the shaded region). Since the NFS trace has a peak to average ratio of 12.5

(see Table 3), the peak load causes the server to temporarily saturate during periods of intense bursts. Figure 14(a)

compares the response times of the two servers. The figure shows that transient overloads cause the average response

time yielded by the partitioned system to be much higher than the integrated server. This is because, as shown in

Section 3.2, sharing disk bandwidth enables the integrated server to handle up to twice the number of clients from a

particular application class if other class is not using up its share of the disk bandwidth. Consequently, the integrated

server can adapt to changing load conditions and handle transient overloads that saturate the partitioned system. This

results in average response times that are substantially smaller than that in the partitioned system. For instance, at a

load of 3000KB/s, which corresponds to a utilization level of 50%, the response time is smaller by a factor of 6.

Next, we study whether a bursty text load causing transient overloads affects the performance of video clients

in the integrated server. To do so, we computed the percentage of deadlines violated for video requests for various

combinations of text and video loads. Our experiments showed that both servers are able to meet all request deadlines

at low to moderate levels of utilization. A small number of requests deadlines were violated at very high levels of

utilization in both servers (for instance, at 90 video clients and a text load of 2500KB/s, less than 50 requests

deadlines out of 14000 requests were violated in both servers (i.e., 0.3% violation)). This demonstrates that Cello

disk scheduling algorithm employed by the integrated server is able to isolate video requests from bursty text loads,

and thereby provide performance that is comparable to the partitioned server.

3.3.2 Impact of Varying Text and Video Loads

Due to the unavailability of video workload traces, in Section 3.3.1 we used a synthetic workload generator that

kept number of video clients fixed and used VBR MPEG traces to generate a varying load from each client. In

practice, the video load (i.e., the number of clients accessing the server) also varies over time. Hence a natural

question is: what is the expected performance of the two architectures in the presence of varying text and video

loads? To answer this question, we hypothesize that the burstiness in the load distribution of video clients is similar

to that of text clients and use the load distribution for text clients (derived from traces) to determine that for video

16

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300 350 400

P
ro

ba
bi

lit
y

Number of text clients

overload probability = 1%
overload probability = 3%
overload probability = 5%

50
100

150
200 0

25

50

75

0
0.01
0.02
0.03
0.04
0.05
0.06

Text load

Video load

(a) (b)

Figure 15: (a) Load distributions for text clients computed using different overload probabilities (b) The combined

load distribution p(t; v) for Æ
1

= 0:01.

clients.1 Using these distributions, we can compute the probability p(t; v) of t text and v video clients simultaneously

accessing the server. Let d(t; v) denote the difference in response times yielded by the two servers at the operating

point (t; v). The expected improvement in response time of the integrated server is then

E(I) =

X

t

X

v

d(t; v) � p(t; v) (1)

Thus, computing E(I) requires us to first compute d(t; v) and p(t; v).

To determine d(t; v), let r
part

(t) and r
int

(t; v), respectively, denote the response times for text requests yielded by

the partitioned and integrated servers when the load consists of t text and v video clients. Then d(t; v) is computed

as

d(t; v) = r

part

(t)� r

int

(t; v) (2)

Note that d(t; v) > 0 indicates that the integrated server yields better response times than the partitioned server and

vice versa. Figure 8(a) plots d(t; v) for different text and video loads.

The probability p(t; v) of operating at a specific operating point is best determined from traces of real workloads.

Due to the unavailability of traces from file systems that simultaneously support video and text applications, we

make the following assumptions to derive p(t; v) from textual workload traces.

� First, we assume that burstiness in load distributions of text and video clients are similar and hence, the

normalized load distributions for video and text are identical. That is, p(t) for a normalized text load of [0; 1℄

is identical to p(v) for a normalized video load of [0; 1℄.

� Second, we model transient overloads by assuming that the probability that the text and video load exceeds

capacity is Æ
1

and Æ
2

, respectively. For text loads, we set Æ
1

to a small value. Since video loads are constrained

1Although time-scales at which text and video clients arrive are different (video loads change more slowly as compared to text loads), we

are only interested in the peak to average variation of the load distribution here.

17

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1 0.12

E
(I

)
(m

s)

Probability of transient overload

Expected improvement in response time

0

20

40

60

80

100

0 0.02 0.04 0.06 0.08 0.1 0.12

%
 im

pr
ov

em
en

t

Probability of transient overload

Percentage improvement in response time

(a) (b)

Figure 16: Improvement in response time in the integrated server. Figures (a) and (b) show the expected improve-

ment and the percentage improvement in response time for different probabilities of transient overload.

by admission control, we assume that our bursty video load never exceeds capacity (i.e., Æ
2

= 0). Then, the

[0; 1℄ ranges of the normalized load distributions p(t) and p(v) can be remapped to [0; T

0

℄ and [0; V

0

℄, where

T

0 and V 0 denote the peak text and video loads such that P (T < t � T

0

) = Æ

1

and P (V < v � V

0

) = Æ

2

.

� Third, we assume that the text and video loads accessing a server are independent of each other. Hence,

p(t; v) = p(t) � p(v).

Thus, given p(t) obtained from textual traces (see Figure 6(b)), we can compute p(t; v).

To evaluate the effect of different peak loads, we varied Æ

1

and constructed several distribution functions p(t).

Figure 15(a) shows p(t) constructed using Æ

1

= 0:01; 0:03; and 0:05, respectively. The figure shows that the

resulting distributions are heavy-tailed, where the average load is smaller than capacity while the peak load can

be substantially larger than capacity (the distributions have average loads of 48.4, 64.7, and 76.9 clients, respectively

and peak loads of 244, 333, and 401 clients). Figure 15(b) shows the p(t; v) computed from one such distribution

p(t).

Figure 16 plots the expected improvement in response time E(I) and the percentage improvement in response

time obtained for different overload probabilities Æ
1

. The figure shows that the expected gain is always positive, and

for the distributions considered, the percentage improvement ranges from 40%–80%. Moreover, the gain increases

with increasing average load since the difference in response times d(t; v) is larger at higher loads (see Figure 8).

3.4 Effect of Partition Size

Our experiments thus far have assumed that resources are equally partitioned among the text and video classes in the

two architectures. In this section, we evaluate the effect of varying the relative fractions of disk bandwidth assigned

to text and video on the performance of the two architectures. Figure 17 depicts the response times of text requests

obtained by varying the number of disks assigned to text and video servers in the partitioned architecture (and

correspondingly varying the weights assigned to the two classes in the integrated architecture). The figure shows

that the relative behavior of the response time graphs yielded by the two architectures remains unchanged even when

18

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

R
es

po
ns

e
tim

e
(m

s)

Text load (normalized)

16 disks, text server=4, w1:w2 = 4:12

Integrated, 20 video clients
Integrated, 50 video clients

Partitioned

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
tim

e
(m

s)

Text load (normalized)

16 disks, text server=8, w1:w2 = 8:8

Integrated, 20 video clients
Integrated, 50 video clients

Partitioned

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
tim

e
(m

s)

Text load (normalized)

16 disks, text server=10, w1:w2 = 10:6

Integrated, 20 video clients
Integrated, 50 video clients

Partitioned

(a) text = 4 disks (b) text = 8 disks (c) text = 10 disks

video = 12 disks video = 8 disks video = 6 disks

Figure 17: Effect of varying the number of disks assigned to the text and video classes on the response time.

0

20

40

60

80

100

4 5 6 7 8 9 10 11 12

E
(I

)
(m

s)

Number of text disks

Expected improvement in response time, 16 disks

0

20

40

60

80

100

4 5 6 7 8 9 10 11 12

%
 im

pr
ov

em
en

t

Number of text disks

Percentage improvement in response time, 16 disks

(a) (b)

Figure 18: Improvement in response time for different partition sizes. Figures (a) and (b) show the expected

improvement and the percentage improvement in response time for different partition sizes (assuming an overload

probability of 5%).

the partition size is varied. This implies that the expected response time yielded by the integrated server is always

smaller than the partitioned server, and hence, the expected improvement in response time E(I) is always positive.

To verify this hypothesis, we varied the partition size, and computed E(I) for the integrated server. Figure 18 shows

the improvement in response time obtained assuming a text overload probability of 5% (i.e., Æ
1

= 0:05 and Æ
2

= 0).

As expected, the integrated server yields a positive gain. The figure also shows that the expected improvement as

well as the percentage improvement in response time decreases as more resources (disks) are allocated to the text

class (since this reduces the amount by which the integrated server outperforms its partitioned counterpart).

Finally, Figure 19 compares the capacities of the two architectures for different partition sizes. Figure 19(a) shows

that the capacity of the partitioned server is completely governed by the number of disks assigned to the text and

video servers. Increasing the number of disks assigned to a component server results in a proportionate increase in

its capacity. The capacity of the ideal integrated server, on the other hands, depends only on the total number of

disks and is independent of the partition sizes. Figure 19(b) shows that the capacity of the integrated server mimics

this ideal scenario—the capacity remains unchanged regardless of the fraction of the bandwidth assigned to text

and video. This is because all disks are shared by all application classes, and the bandwidth unused by a class is

19

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400

N
um

be
r

of
 v

id
eo

 c
lie

nt
s

Number of text clients

16 disks total, video disks = 16 - text disks

Integrated, ideal
Partitioned, 4 text disks
Partitioned, 8 text disks

Partitioned, 12 text disks

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400

N
um

be
r

of
 v

id
eo

 c
lie

nt
s

Number of text clients

Integrated server, 16 disks

Integrated, ideal
4 text disks, w1:w2=1:3
8 text disks, w1:w2=1:1

12 text disks, w1:w2=3:1

(a) (b)

Figure 19: Capacities of the partitioned, ideal and actual integrated servers for different partition sizes.

dynamically reassigned to other classes. However, as explained in Section 3.2, the integrated server suffer from a

small degradation is capacity due to load imbalances and idiosyncrasies of the scheduling algorithm. Note that, due

to its adaptive nature, the integrated server obviates the need for precise assignment of weights to different classes

and simplifies system administration.

4 Concluding Remarks

Integration—supporting multiple application classes with heterogeneous requirements—is an emerging trend in net-

works, file systems, and operating systems. In this paper, we evaluated two architectural alternatives—partitioned

and integrated—for designing next generation file systems. We evaluated the performance gains achieved by the

integrated architecture as a result of sharing disk bandwidth between application classes. We demonstrated that

though the problem of sharing disk bandwidth is conceptually similar to that of sharing network link bandwidth in

integrated services networks, the arguments that demonstrate the superiority of integrated services networks are not

applicable to file systems. To experimentally evaluate the efficacy of sharing disk bandwidth, we considered two

application classes, text and video, and for these application classes, showed that an integrated server: (i) yields

better performance than its counterpart over a large operating region but has slightly worse performance in a small

region, (ii) has a larger capacity since it can support a larger number of clients from a class when the other class

does not use its fair share, and (iii) is self-adapting since larger capacity and sharing of disk bandwidth enable it to

better handle bursty loads that cause transient overloads.

We would like to note that, in addition to the performance considerations, the selection between the partitioned

and the integrated architectures is governed by several other factors. For instance, partitioned file systems are easy to

design and implement, since techniques for designing file systems optimized for a single application class are well

understood. Furthermore, the presence of legacy file systems or specialized applications that need custom hardware

and software may dictate the use of partitioned or even separate servers. In contrast, system administration costs may

favor the use of integrated servers over partitioned or multiple disparate servers. Although the need for supporting

multiple application classes within an integrated server increases file system complexity and development costs,

20

such file systems generally facilitate easy integration of new application classes; allowing the development cost to

be amortized over time as new application classes are added. Adding a new application class in the partitioned

system, on the other hand, requires the development of a new component file system. Thus, in summary, the choice

between the partitioned and integrated architectures is dependent on the needs of a particular environment, which

govern the balance between these tradeoffs.

References

[1] P. Barham. A Fresh Approach to File System Quality of Service. In Proceedings of NOSSDAV’97, St. Louis, Missouri,

pages 119–128, May 1997.

[2] J.C.R. Bennett and H. Zhang. Hierarchical Packet Fair Queuing Algorithms. In Proceedings of SIGCOMM’96, pages

143–156, August 1996.

[3] E G. Coffman and M. Hofri. On the Expected Performance of Scanning Disks. SIAM Journal of Computing, 10(1):60–70,

February 1982.

[4] E G. Coffman, L A. Klimko, and B. Ryan. Analysis of Scanning Policies for Reducing Disk Seek Times. SIAM Journal

of Computing, 1(3):269–279, September 1972.

[5] M. Dahlin, C. Mather, R. Wang, T. Anderson, and D. Patterson. A Quantitative Analysis of Cache Policies for Scalable

Network File Systems. In Proceedings of ACM SIGMETRICS’94, May 1994.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing Algorithm. In Proceedings of ACM

SIGCOMM, pages 1–12, September 1989.

[7] P J. Denning. Effects of Scheduling on File Memory Operations. In Proceedings of AFIPS SJCC, pages 9–21, 1967.

[8] R. Geist and S. Daniel. A Continuum of Disk Scheduling Algorithms. ACM Transactions on Computer Systems, 5(1):77–

92, February 1987.

[9] L. Golubchik, J. C. S. Lui, and R. R. Muntz. Reducing I/O Demand in Video-On-Demand Storage Servers. In Proceedings

of SIGMETRICS ’95, Ottawa, Canada, May 1995.

[10] S. D. Gribble, G. Manku, D. Roselli, E. Brewer, T. Gibson, and E. Miller. Self-Similarity in File Systems. In Proceedings

of ACM SIGMETRICS ’98, Madison, WI, June 1998.

[11] M. Hofri. Disk Scheduling: FCFS vs. SSTF Revisited. Communications of the ACM, 23(11):645–653, November 1980.

[12] E.K. Lee and R.H. Katz. An Analytic Performance Model for Disk Arrays. In Proceedings of the 1993 ACM SIGMET-

RICS, pages 98–109, May 1993.

[13] C. Martin, P. S. Narayan, B. Ozden, R. Rastogi, and A. Silberschatz. The Fellini Multimedia Storage Server. Multimedia

Information Storage and Management , Editor S. M. Chung, Kluwer Academic Publishers, 1996.

[14] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A Fast File System for UNIX. ACM Transactions on Computer

Systems, 2(3):181–197, August 1984.

[15] G. Nerjes, P. Muth, M. Paterakis, Y. Romboyannakis, P. Triantafillou, and G. Weikum. Scheduling Strategies for Mixed

Workloads in Multimedia Information Servers. In Proceedings of the 8th International Workshop on Research Issues in

Data Engineering (RIDE’98), Orlando, Florida, February 1998.

[16] A.L. Narasimha Reddy and J. Wyllie. Disk Scheduling in Multimedia I/O System. In Proceedings of ACM Multimedia’93,

Anaheim, CA, pages 225–234, August 1993.

[17] Timothy Roscoe. The Structure of a Multi-Service Operating System. PhD thesis, University of Cambridge Computer

Laboratory, April 1995. Available as Technical Report No. 376.

[18] S. Shenker. Fundamental Design Issues for the Future Internet. IEEE Journal of Selected Areas in Communications,

13:1176–1188, September 1995.

21

[19] P. Shenoy, P. Goyal, and H M. Vin. Architectural Considerations for Next Generation File Systems. Technical Report

TR98-48, Dept. of Computer Science, Univ. of Massachusetts at Amherst, 1998.

[20] P Shenoy and H M. Vin. Cello: A Disk Scheduling Framework for Next Generation Operating Systems. In Proceedings

of ACM SIGMETRICS Conference, Madison, WI, pages 44–55, June 1998.

[21] P J. Shenoy, P. Goyal, S S. Rao, and H M. Vin. Symphony: An Integrated Multimedia File System. In Proceedings of the

SPIE/ACM Conference on Multimedia Computing and Networking (MMCN’98), San Jose, CA, pages 124–138, January

1998.

[22] P J. Shenoy and H M. Vin. Efficient Striping Techniques for Multimedia File Servers. In Proceedings of the Seventh

International Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV’97), St.

Loius, MO, pages 25–36, May 1997.

[23] T. Teorey and T. B. Pinkerton. A Comparative Analysis of Disk Scheduling Policies. Communications of the ACM,

15(3):177–184, March 1972.

[24] F A. Tobagi, J Pang, R Baird, and M Gang. Streaming RAID – A Disk Array Management System For Video Files. In

Proceedings of ACM Multimedia ’93, Anaheim, CA, pages 393–400, 1993.

[25] A. K. Tsiolis and M. Vernon. Group Guaranteed Channel Capacity in Multimedia Storage Servers. In Proc. ACM

Sigmetrics ’97, Seattle, pages 285–297, June 1997.

[26] R. Wijayaratne and A. L. N. Reddy. Providing QoS Guarantees for Disk I/O. Technical Report TAMU-ECE97-02,

Department of Electrical Engineering, Texas A&M University, 1997.

[27] B L. Worthington, G R. Ganger, and Y N. Patt. Scheduling Algorithms for Modern Disk Drives. In Proceedings of ACM

SIGMETRICS’94, pages 241–251, May 1994.

22

